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Simulation of lid-driven cavity �ows by parallel lattice
Boltzmann method using multi-relaxation-time scheme
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SUMMARY

Two-dimensional near-incompressible steady lid-driven cavity �ows (Re=100–7,500) are simulated
using multi-relaxation-time (MRT) model in the parallel lattice Boltzmann BGK Bhatnager–Gross–
Krook method (LBGK). Results are compared with those using single-relaxation-time (SRT) model
in the LBGK method and previous simulation data using Navier–Stokes equations for the same �ow
conditions. E�ects of variation of relaxation parameters in the MRT model, e�ects of number of the
lattice points, improved computational convergence and reduced spatial oscillations of solution near
geometrically singular points in the �ow �eld using LBGK method due to MRT model are highlighted
in the study. In summary, lattice Boltzmann method using MRT model introduces much less spatial
oscillations near geometrical singular points, which is important for the successful simulation of higher
Reynolds number �ows. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The lattice Boltzmann equation (LBE) using relaxation technique was introduced by Higuerea
and Jimenez [1] to overcome some drawbacks of lattice gas automata (LGA) such as large
statistical noise, limited range of physical parameters, non-Galilean invariance, and implemen-
tation di�culty in three-dimension problem. In the original derivation of LBE using relaxation
concept, it was strongly connected to the underlying LGA. But it was soon recognized that
it could be constructed independently [2]. Since then, the lattice Boltzmann methods (LBM)
have received considerable attention as an alternative to traditional computational �uid dy-
namics for simulating certain complex �ow problems; see References [3–5] and references
cited therein. The simplest LBE is the lattice Bhatnager–Gross–Krook (LBGK) equation [6],
based on a single-relaxation-time (SRT) approximation. Due to the extreme simplicity, the
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lattice BGK (LBGK) equation [7] has become the most popular lattice Boltzmann model in
spite of its de�ciencies, for example, in simulating high-Reynolds numbers �ow.
In the LBM, �uid is modelled by particles moving on a regular lattice. At each time step

particles propagate to neighbouring lattice sites and re-distribute their velocities in a local
collision phase. The inherent locality of the scheme makes it perfect for parallel computing
[8], whose advantage will be taken in the current study. Through Chapman–Enskog multi-
scale expansion [9], the complicated, non-linear compressible Navier–Stokes equations can be
recovered from the simple, linear LBGK equation based on the assumptions that, �rst, Mach
number is small, and, second, the density varies slowly in the �ow �eld. Thus, the LBM
has been applied mostly to compute the �ow �eld in near-incompressible limit. In particular,
the LBGK method has been successfully applied to problems of near-incompressible �ows
through porous media e.g. References [10–12], multiphase �ows e.g. References [13–15] and
dynamics of droplet breakup e.g. References [16, 17], to name a few.
However, there exist some de�ciencies in solving higher Reynolds number incompressible

�ow problems or resolving �ow �elds near geometrically singular points using SRT LBM
[18, 19]. On one hand, the �uid density is required to be nearly constant for nearly incom-
pressible �ows and the pressure is proportional to the local density �eld. On the other hand,
pressure and shear stress are singular near the geometrically singular points (e.g. sharp cor-
ners). Hence, it often causes unphysical, strong local spatial oscillations near these singular
points, which turns out to contaminate the �ow �eld far away from these singular points.
Previous work originally developed by D’Humieres [19], and further extended by Lallemand
and Luo [20] suggests that the use of a MRT model can improve the numerical stability and
reduce dramatically the unphysical oscillations for some simple �ows. They concluded that
using MRT model in the LBM in these simple �ows can signi�cantly reduce the spatial os-
cillation near the singular points and improves the quality of the solution at higher Reynolds
number. However, there is no systematic study in revealing the limits of applying the MRT
model in the LBM for higher Reynolds number �ows, which have complicated �ow features.
A lid-driven cavity �ow is selected as the test problem because it has geometrically singular

points in the �ow, but geometrically simple enough considering implementation of boundary
conditions, which otherwise complicates the evaluation of MRT scheme in LBM. In addition,
this �ow is very complicated in �ow structure as Reynolds number increases to some extent. In
summary, the objectives of the current research are to implement and to evaluate the parallel
LBM by using MRT technique by comparing the results of an upper, lid-driven cavity �ow
with those by LBM using SRT technique and previous results using Navier–Stokes equations.

2. NUMERICAL METHOD

2.1. Lattice Boltzmann method with SRT model

LBM method solves the microscopic kinetic equation for particle distribution f(x; v; t), where
x and v is the particle position and velocity vector, respectively, in phase space (x; v) and
time t, where the macroscopic quantities (velocity and density) are obtained through moment
integration of f(x; v; t). The most popular used LBM equation is the SRT LBGK model [7],
and listed as follows:

fi(�x + �e�t; t +�t)− fi(�x; t) = −![fi(�x; t)− feqi (�x; t)] (1)
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Figure 1. The 9-velocity LBE model on the 2-D square lattice.

where fi(�x; t) and f
eq
i (�x; t) are the particle distribution function and the equilibrium particle

distribution function of the ith discrete particle velocity vi, respectively, �e is a discrete velocity
vector. Note that !=�t=� is the collision frequency (�t is the advancing time step and � is
the collision relaxation time).
The 9-velocity LBE model on the 2-D square lattice (Figure 1), denoted as the D2Q9

model, is used in the current study for simulating the steady lid-driven cavity �ow. Let
c = �x=�t=�y=�t be the lattice streaming speed (�x and �y is the distance a particle
moves of grid spacing) for isothermal near-incompressible �ows, the equilibrium distribution
function can be derived as the following form [9]:

feqi (�x; t)=�wi

[
1 +

3
c2
�ei · �u+ 9

2c4
( �ei · �u)2 − 3

2c2
�u · �u

]
(2)

where wi is a weighting factor and �u is the �uid velocity. In addition, the discrete velocities
for D2Q9 model are

�ei=




(0; 0); i=0; rest particle

(±c; 0); (0;±c); i=1; 2; 3; 4

(±c;±c); i=5; 6; 7; 8

(3)

and the values of the weighting factors wi are

wi=




4=9; i=0; rest particle

1=9; i=1; 2; 3; 4

1=36; i=5; 6; 7; 8

(4)
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The density and velocities can be computed simply by moment integration as

�=
∑
i
fi (5)

�u=
1
�

∑
i
�eifi (6)

Application of the multi-scale technique (Chapman–Enskog expansion) yields the Navier–
Stokes equation with the pressure p=�c2s , where cs= c=

√
3, and an advection term with

Galilean invariance. The viscosity of the simulated �uid is �=�t(1=!−1=2)c2s =(�−1=2�t)c2s .
However, the simplicity has to pay the price of necessarily using square lattices of constant
spacing (�x=�y) and consequently lead to the unity of the Courant–Fridrich–Levy (CFL)
number due to �x=�y=�t. From here on we shall use the units of �x=1, �y=1 and
c=1 such that all the relevant quantities are dimensionless.
With the choice of viscosity in the above, Equation (1) is formally a second order method

(excluding the boundary conditions) for solving near-incompressible �ows [9]. Physical and
numerical constraints require that !¡2. In the current study, !=1:9 unless otherwise speci-
�ed. In general, Equation (1) is solved in two steps:
collision step:

f∗
i (�x; t +�t)=fi(�x; t)−![fi(�x; t)− feqi (�x; t)] (7a)

streaming step:

fi(�x + �ei; t +�t)=f∗
i (�x; t +�t) (7b)

which is known as the LBGK method [5]. Note that, in the above, ∗ denotes the post-collision
values. It is obvious that the collision process is completely localized, and the streaming step
requires little computational e�ort by advancing the data from neighboring lattice points that
makes Equation (1) perfect for parallel implementation, which will be shown in detail later.
Previous experience in obtaining solutions at higher Reynolds numbers using SRT model

of the LBE method has shown that the solution �eld (u; v; p) often exhibits spurious spatial
oscillations in regions of large gradient such as stagnation point and sharp concave corners
[18]. For example, it has shown that the serious spatial oscillations of pressure �eld can be
clearly observed at Reynolds number of 5000 with 256× 256 lattice points at the upper two
concave corners [18]. Depending upon the geometry and �ow problem, such spatial oscillation
may even propagate to contaminate the �ow solutions in the regions far away from the singular
points. In addition, the spatial oscillations in the solution can strongly a�ect the computational
stability and convergence rate. Of course, the LBE using SRT model can always improve its
computational stability and convergence by increasing the number of lattice points in the
computational domain, although it is not recommended in general. Therefore, to develop a
similar LBE technique but simple enough in implementation is strongly required to resolve
the above-mentioned de�ciencies.

2.2. Lattice Boltzmann method with MRT model

Recently, Lallemand and Luo [20] suggested that the use of a MRT model could improve the
numerical stability and reduce dramatically the unphysical oscillations for some simple �ows.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:921–937



SIMULATION OF LID-DRIVEN CAVITY FLOWS 925

They have performed detailed theoretical analysis on the dispersion, dissipation and stability
characteristics of a generalized lattice Boltzmann equation model proposed by d’Humieres
[19]. They have found that the MRT model is equivalent to the SRT model in the long wave-
length (low wave number) limit for macroscopic variables of interest in various simple �ows
through the linearized analysis [20]. Di�erence between two relaxation models is identi�ed
as a high-order e�ect (short wavelength limit), which can hardly detected in simple �ows.
It is well known that geometrically and mathematically singular points can adversely a�ect
the �ow solution in short wavelength limit. We would thus expect, at least, the solution of
MRT model near the singular point is appreciably di�erent from that of SRT model. For
convection-dominated �ows, the local di�erence near the singularities may also lead to large
di�erences in �ow regimes far away. Thus, it is important to understand how the solution
using MRT model is di�erent from that using SRT model. In addition, it is potentially useful
to compute �ows at higher Reynolds numbers using MRT model in LBM. In what follows,
we will brie�y summarize the important features of MRT model [20] as compared with those
of SRT model.
Lallemand and Luo [20] have de�ned a new column vector of macroscopic variables

�R=(�; e; �; jx; qx; jy; qy; pxx; pxy)T and �R can be related to the column vector of �F=(f0; f1; f2; f3;
f4; f5; f6; f7; f8)T as follows:

�R=




�

e

�

jx

qx

jy

qy

pxx

pxy




=




1 1 1 1 1 1 1 1 1

−4 −1 2 −1 2 −1 2 −1 2

4 −2 1 −2 1 −2 1 −2 1

0 1 1 0 −1 −1 −1 0 1

0 −2 1 0 −1 2 −1 0 1

0 0 1 1 1 0 −1 −1 −1
0 0 1 −2 1 0 −1 2 −1
0 1 0 −1 0 1 0 −1 0

0 0 1 0 −1 0 1 0 −1







f0

f1

f2

f3

f4

f5

f6

f7

f8




= ��M �F (8)

where ��M is a 9× 9 matrix transforming �F to �R. In the column vector �R, � is the �uid density,
� is related to the square of the energy e, jx and jy are the mass �ux in two directions, qx
and qy correspond to the energy �ux in two directions, and pxx and pxy correspond to the
diagonal and o�-diagonal component of the viscous stress tensor. One immediate advantage
of the MRT model is that macroscopic variables of interest can be obtained readily by simply
performing the matrix multiplication ��M �F if �F is known. In addition, due to the conservation
of mass and momentum before and after particle collision, the total mass and momentum
should not relax at all. However, Equation (7a) in standard LBGK method requires all fi’s are
relaxed at the same rate and, hence, all macroscopic quantities of interest. Physically speaking,
di�erent physical modes should have di�erent relaxation rates. By taking this into account
in the MRT model, based on Equation (7a), the collision procedure for �R∗ is performed
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as follows:

�R∗=




�∗=�− s1(�− �eq)
e∗= e − s2(e − eeq)
�∗= �− s3(�− �eq)
j∗x = jx − s4(jx − jeqx )
q∗
x = qx − s5(qx − qeqx )
j∗y = jy − s6(jy − jeqy )
q∗
y = qy − s7(qy − qeqy )

p∗
xx=pxx − s8(pxx − peqxx)
p∗
xy=pxy − s9(pxy − peqxy




= �R− ��S( �R− �Req) (9)

where ∗ denotes the post-collision state, ��S is the 9× 9 diagonal matrix, which will be shown
later. In ��S, s1 = s4 = s6 = 0 enforces mass and momentum conservation before and after colli-
sion. Note that the equilibrium values in �R∗ can be written as [20]

eeq = −2�+ 3(u2 + v2)
�eq = �− 3(u2 + v2)
qeqx = −u
qeqy = −v
peqxx = u2 − v2
peqxy = uv

(10)

Before the streaming step, Equation (7b), is performed, one needs to transform the post-
collision values, �R∗, back to �F∗ by using Equation (9) as

�F∗= ��M−1 �R∗= �F − ��M−1 ��S( �R− �Req) (11)

where ��S is the diagonal matrix,

��S=




0 0 0 0 0 0 0 0 0

0 s2 0 0 0 0 0 0 0

0 0 s3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 s5 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 s7 0 0

0 0 0 0 0 0 0 s8 0

0 0 0 0 0 0 0 0 s9




(12)

Finally, the streaming step for all fi’s in the MRT model is performed exactly the same as
in the standard LBGK model using Equation (7b).
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Lallemand and Luo [20] have shown that the MRT model can reproduce the same viscosity
as that by SRT model if we set s8 = s9 = 1=�. Once this is decided, the rest of the relaxation
parameters (s2; s3; s5 and s7) for di�erent physical modes can then be chosen more �exibly.
In Reference [20], they recommended the values to be slightly greater than unity. In this
research, we will make some sensitivity study of these parameters in the current test case to
see if complicated �ow has di�erent optimum values. Finally, it is worthy to note that the
MRT model reduces to the SRT model by simply setting s2 = s3 = s5 = s7 = s8 = s9 = 1=�.

2.3. Parallel implementation of lattice Boltzmann method

Due to the locality of collision (or relaxation) in the LBM, it is highly suitable for parallel
computing. Neighbouring lattice points are involved in the LBM only during the streaming
(or moving) process, as shown in Equation (7b). Minimum communication as compared
with computation is expected; thus, it is natural to apply physical domain decomposition for
parallel implementation of LBM. Computational domain is decomposed evenly using the fact
that computational time of LBM is approximately proportional to the lattice points in each
processor. All results shown later are computed on an 8-node PC-Cluster system, running at
1GHz for each processor, unless otherwise speci�ed. Parallel e�ciency can be nearly 100% in
the current test case using 8 processors. Detailed analysis of parallel performance of di�erent
parallel implementations will be reported elsewhere.

2.4. Boundary conditions

2.4.1. Stationary wall boundary conditions. How to properly implement the wall boundary
conditions within LBM framework is still an ongoing research topic e.g. Reference [21] and
reference cited therein. The most often-used scheme is the so-called ‘bounce back’ scheme,
which has been argued that it is only of �rst-order accuracy as compared with of second-order
accuracy for LBM formulation. However, it was recently shown that the error is su�ciently
small if the relaxation parameter ! (or 1=�) is chosen to be close enough to 2 [21]. Thus, we
believe that the bounce-back boundary conditions in the current study shall not in�uence the
order of accuracy of LBM using SRT and MRT models if we choose ! to be within some
range.

2.4.2. Moving wall boundary conditions. For the current problem, we have assumed equi-
librium distribution function at the upper moving plate, which is computed by substituting
the uniform plate velocity into Equation (2) and the initial density assignment. After stream-
ing, the velocity at the top plate is reinforced to be the uniform plate velocity and then the
equilibrium distribution function is reevaluated using the �xed plate velocity and the updated
density at the plate. In the current study, the upper two corner lattice points are considered
as the part of the moving plate. The uniform top plate velocity is U =0:1, considering the
validity of using LBM in simulating near-incompressible �ows.

3. RESULTS AND DISCUSSIONS

To clearly demonstrate and test the advantages of LBM using MRT model over that using
SRT model, we compute a steady, upper lid-driven �ow (Re=100–7500) by LBM using both
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MRT and SRT models. We compare various macroscopic variables of interest in regions of
both large and small gradients. In addition, results from the LBM using MRT and SRT models
are compared with those of N–S solvers by Ghia et al. [22] where it is appropriate. For all
the cases presented in this paper, steady-state solution is assumed only when the absolute
value of relative di�erence of the velocities (both u and v) at all lattice points is less than
10−5 for successive 10 000 time steps.
Figure 2 demonstrates the typical test of grid sensitivity (64× 64 and 256× 256 lattice

points) by comparing the velocity pro�les (Re=1000) at the centreline of the cavity for both
SRT and MRT models with the data by Ghia et al. [22], which has been considered to be the
most comprehensive computation for the impressible lid-driven cavity �ow. It is clearly shown
that the di�erence of velocity distributions between the current study and Ghia et al. [22] is
very small at 256× 256 lattice points. Also the di�erence between MRT and SRT models is
nearly undistinguished at this Reynolds number of 1000. Similar trends are found for other
Reynolds numbers up to 7500 for both MRT and SRT models. Thus, all results discussed in
the followings are computed using 256× 256 lattice points, unless otherwise speci�ed.
Figure 3 shows the simulated streamline for Reynolds numbers of 100, 1000 and 7500

for both SRT and MRT models. Since the upper plate moves into the right-hand direction,
the major vortex in the center circulates in clockwise direction as expected. In addition to
the major vortex, there appear two minor vortices circulating counterclockwise in the lower
cavity corners (Re=1000 and 7500), the third minor vortex circulating counterclockwise in
the upper left-hand corner (Re=7500), and the fourth minor vortex circulating clockwise in
the lower right-hand corner at Re=7500. Note that only MRT model is able to predict the
fourth minor vortex in the lower right-hand corner, which is also a geometrically singular
point, while SRT model fails to predict the fourth minor vortex at this corner. In addition, the
sizes of the minor vortices increase with increasing Reynolds numbers. Generally speaking,
the overall �ow structures (streamlines) predicted by the SRT and MRT models are very
similar to those predicted by Ghia et al. [22], except some di�erences near the corners, which
can be ampli�ed later by looking at other �ow properties.
Simulated location (x- and y-co-ordinate) of major central vortex as a function of Reynolds

numbers by both SRT and MRT models along with previous data by Ghia et al. [22] using
is illustrated in Figure 4. For low Reynolds number (e.g. Re=100), the centre of the primary
vortex is located near the right-hand corner of the cavity. As Reynolds number increases, the
primary vortex centre moves towards the geometric centre of the cavity. Maximum stream
function values of the present study for the primary vortex at di�erent Reynolds numbers are
listed in Table I along with the previous data by Ghia et al. [22]. The results of the present
work and that of Ghia et al. [22] are in excellent agreement within 0.8% for all Reynolds
numbers, except for Re=2000, where the data is provided by Ghia et al. [22]. In addition,
excellent agreement between STR and MRT models is also found.
Figure 5 shows the vorticity distribution using both SRT and MRT models at di�erent

Reynolds numbers (Re=100, 1000 and 7500). It is clear that the vorticity distribution using
these two models is approximately the same for Re=100 and 1000. However, for Re=7500
(similarly for Re=5000), there exists obvious vorticity ‘jiggles’ around the upper two cavity
corners using SRT model, especially the left-hand one due to the geometrical singularity at
this corner. Most importantly and interestingly, this vorticity ‘jiggles’ is not only localized
at the corner, but also it has contaminated the solution far away from the corner, as shown
clearly in Figure 5(f). The situation is even worse at Re=10000, where the ‘contamination’
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Figure 2. (a) Velocity pro�les for u along the vertical geometric centreline of the cavity; (b) Velocity
pro�les for v along the horizontal geometric centreline of the cavity.
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Figure 3. Streamline plot at various Reynolds numbers (a) Re=100(MRT); (b) Re=100(SRT);
(c) Re=1000(MRT); (d) Re=1000(SRT); (e) Re=7500(MRT); (f) Re=7500(SRT).
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Figure 4. The location of the centre of the primary vortex for di�erent
values of Reynolds, SRT and MRT models.

Table I. Vortex centres: stream function for primary vortex.

Reynolds number

Primary vortex 100 400 1000 2000 5000 7500

a 0.1034 0.1139 0.1179 0.1190 0.1200
b 0.1031 0.1124 0.1171 0.1195 0.1201 0.1210
c 0.1030 0.1122 0.1170 0.1197 0.1203 0.1215

Note: a. U. Ghia, K.N. Ghia, and C. T. Shin [25]. b. MRT model (present). c. SRT model (present).

penetrates into the central part of the cavity using SRT model, although it is not shown in
the current paper.
The above-mentioned di�erences for SRT and MRT models are highlighted again more

clearly by the pressure contours at various Reynolds numbers as shown in Figure 6. The
pressure deviation is de�ned as c2s ×(�− ��), where �� is the average �uid density of within the
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Figure 5. Contour plots of vorticity at various Reynolds numbers (a) Re=100(MRT); (b) Re=100
(SRT); (c) Re=1000(MRT); (d) Re=1000(SRT); (e) Re=7500(MRT); (f) Re=7500(SRT).
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Figure 6. Normalized pressure contours at various Reynolds numbers (x 1000) (a) Re=100(MRT); (b)
Re=100(SRT); (c) Re=1000(MRT); (d) Re=1000(SRT); (e) Re=7500(MRT); (f) Re=7500(SRT).
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Figure 7. Comparison of the velocity pro�les at various Reynolds numbers (i=2)
(a) Re=100(x-component); (b) Re=100(y-component); (c) Re=1000 (x-component);
(d) Re=1000(y-component); (e) Re=7500(x-component); (f) Re=7500(y-component).
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Figure 8. Sensitivity of the selecting relaxation parameters of the velocity pro�les
at i=2 (a) x-component (b) y-component.
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cavity. In these �gures, values of pressure deviation are multiplied by 1000 for the purpose
of illustration clarity. It can be seen that the pressure contour at the upper-left corner for SRT
model becomes blurred at Re=1000 (Figure 6(d)), which geometric singularity begins to
in�uence the �ow solution near this corner. The situation becomes worse even in regions far
away from the corner at Re=7500 for SRT model (Figure 6(f)), while the pressure contour
remains normal at this Reynolds number for MRT model. The di�erences between SRT and
MRT models can also be highlighted in detail later by considering the detailed distribution
of velocity pro�les near these corners as follows.
Figure 7 illustrates the comparison of u and v velocity distributions very close to the left

vertical wall (i=2 lattice point) for SRT and MRT models at various Reynolds numbers.
Results clearly show that the velocity distributions (both u- and v-velocity) by SRT model
present obvious spatial oscillations close to the upper-left corner, while the velocity distri-
butions by MRT model present much less spatial oscillation in the same region of interest.
In general, the spatial oscillation of solution around the upper-left corner becomes worse as
Reynolds number increases. The di�erence represents that MRT model is more suitable, as
compared with SRT model, for treating �ow around geometrical singularity and potentially
higher Reynolds-number �ows, at least, for steady �ows.
Finally, sensitivity of selecting the relaxation parameters (s2; s3; s5 and s7) has shown

(Figure 8 for Re=1000, 64× 64 lattice points) to be relatively small once their values are
close to 1.1. For values of the relaxation parameters close to 1.9, the spatial oscillations of the
u- and v-velocity appear to be serious. Also the deviation increases with increasing Reynolds
number as expected. Note that for the results presented in the above, they are all set to 1.1
for the simplicity, unless otherwise speci�ed.

4. CONCLUSIONS

In the current study, an upper, lid-driven cavity �ow is simulated by parallel lattice Boltz-
mann method using multi-relaxation time scheme. Results are then compared with those by
LBM using single-relaxation time scheme and previous published data using N–S solver. In
general, results using MRT and SRT techniques are both in good agreement with those using
N–S solver for Re=100–7500 for the most part of the �ow within the cavity. In summary, we
can conclude that MRT technique is superior to SRT technique in simulating higher Reynolds
number �ows having geometrical singularity with much less spatial oscillations due to the dif-
ferent relaxation rates for di�erent physical modes embedded in the MRT scheme. In addition,
the code using the MRT model takes only about 15% more CPU time than that using SRT
model. Test for unsteady (periodic) �ow, e.g. a �ow past an obstacle with vortex shedding
using MRT technique is currently in progress and will be reported in the near future.

ACKNOWLEDGEMENTS

Authors would like to thank Dr. Bersdo� and Dr. Li-Shi Luo for helpful discussions during the initial
development of this research. Parallel computing resources partly provided by National Center for High-
performance Computing in Taiwan is also highly appreciated.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:921–937



SIMULATION OF LID-DRIVEN CAVITY FLOWS 937

REFERENCES

1. Higuera FJ, Jeminez J. Boltzmann approach to lattice gas simulations. Europhysics Letters 1989; 9:663–668.
2. Higuera FJ, Succi S, Benzi R. Lattice gas-dynamics with enhanced collisions. Europhysics Letters 1989;
9:345–349.

3. Succi S, Amati G, Benzi R. Challenges in lattice Boltzmann computing. Journal of Statistical Physics 1995;
81:5–16.

4. Qian YH, Succi S, Orszag SA. Recent advances in lattice Boltzmann computing. Annual Review of
Computational Physics, vol. III. World Scienti�c: Singapore, 1995; 195–242.

5. Chen S, Doolen GD. Lattice Boltzmann method for �uid �ow. Annual Review of Fluid Mechanics 1998;
30:329–364.

6. Bhatnagar PL, Gross EP, Krook M. A model for collision proceses in gases. I. Small amplitude processes in
charged and neutral pn-component system. Physical Review 1954; 94:511–525.

7. Chen H, Chen S, Matthaeus WH. Recovery of the Navier–Stokes equations using a lattice Boltzmann method.
Physical Review A 1992; 45:R5339–R5342.

8. Kandhai D, Koponen A, Hoekstra A, Kataja M, Timonen J, Sloot PMA. Lattice Boltzmann hydrodynamics on
parallel systems. Computer Physics Communications 1998; 111:14–26.

9. Dieter A, Wolf-Gladrow. Lattice Gas Cellular Automata and Lattice Boltzmann Models. Springer: Berlin,
2000.

10. Krafczyk M, Schulz M, Rank E. Lattice-gas simulations of two-phase �ow in porous media. Communications
in Numerical Methods in Engineering 1998; 14:7–12.

11. Bernsdorf J, Brenner G, Durst F. Numerical analysis of the pressure drop in porous media �ow with lattice
Boltzmann (BGK) automata. Computer Physics Communications 2001; 129:247–255.

12. Freed DM. Lattice-Boltzmann method for macroscopic porous media modeling. International Journal of Modern
Physics C 1998; 9:1491–1503.

13. Kono K, Ishizuka T, Tsuba H. Application of lattice Boltzmann model to multiphase �ows with phase transition.
Computer Physics Communications 2001; 129:110–120.

14. Hou S, Shan X, Zou Q, Doolen GD, Soll WE. Evaluation of two lattice Boltzmann models of multiphase �ows.
Journal of Computation Physics 1997; 138:695–713.

15. He X, Chen S, Zhang R. A lattice Boltzmann scheme for incompressible multiphase �ow and its application in
simulation of Rayleigh Taylor instability. Journal of Computation Physics 1999; 152:642–663.

16. Hashimoto Y, Ohashi Y. Droplet dynamics using the lattice-gas method. International Journal of Modern
Physics C 1997; 8:977–983.

17. Xi H, Duncan C. Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup
under simple shear �ow. Physical Review E 1999; 59:3022–3026.

18. Hou S. Lattice Boltzmann Method for Incompressible, Viscous Flow. Ph.D. Thesis, Department of Mechanical
Engineering, Kansas State University, 1995.

19. D’Humieres D. Generalized lattice Boltzmann equation. In Rare�ed Gas Dynamics: Theory and Simulations,
Progress in Astronautics and Aeronautics, vol. 159, Shizgal BD, Weaver DP (eds). AIAA: Washington, DC,
1992; 45–458.

20. Lallemand P, Luo L-S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean
invariance, and stability. Physics Review E 2000; 61:6546–6562.

21. Inamuro T, Yoshine M, Ogino F. A non-slip boundary condition for lattice-Boltzmann simulations. Physics of
Fluids 1995; 7:2928–2930.

22. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible �ow using the Navier–Stokes equations and
a multigrid method. Journal of Computational Physics 1982; 48:387–411.

23. Davis RW, Moore EF, Putell LP. A numerical–experimental study of con�ned �ow around rectangular cylinders.
Physics of Fluids 1984; 27:46–59.

24. Wolf-Gladrow DA. Lattice-Gas Cellular Automata and Lattice Boltzmann Models. Springer: Berlin, 2000.
25. Bruer M, Bernsdorf J, Zeiser, Durst F. Accurate computations of the laminar �ow past a square cylinder based

on two di�erent methods: lattice-Boltzmann and �nite-volume. International Journal of Heat and Fluid Flow
2000; 21:186–196.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:921–937


